Bell Ringer - Solve the equations by factoring.

1.
$$x^2 + x = 6$$

2.
$$x^2 - 4x - 8 = 4$$

Bell Ringer - Solve the equations by factoring.

1.
$$x^{2} + x = 6$$

 $x^{2} + x - 6 = 0$
 $(x + 3)(x - 2) = 0$

X = -3 and 2

2.
$$x^{2} - 4x - 8 = 4$$

$$x^{3} - 4x - 12 = 0$$

$$(x - 6)(x + 2) = 0$$

$$x = 6 \text{ and } -2$$

Factoring $ax^2 + bx + c$ when a = 1

Factoring quadratics is only possible if the discriminant is a perfect square.

b2 - 4ac

Determine if the quadratic can be factored with integers by finding the discriminant. If yes, then factor. If no, explain why.

1.
$$x^2 - 4x - 5 = 0$$

Determine if the quadratic can be factored with integers by finding the discriminant. If yes, then factor. If no, explain why.

1.
$$x^2 - 4x - 5 = 0$$

discriminant $b^2 - 4ac$
Factor $-4^2 - 4(1)(-5)$
 $(x-5)(x+1)=0$ $16+20=36$ perfect sq.

Determine if the quadratic can be factored with integers by finding the discriminant. If yes, then factor. If no, explain why.

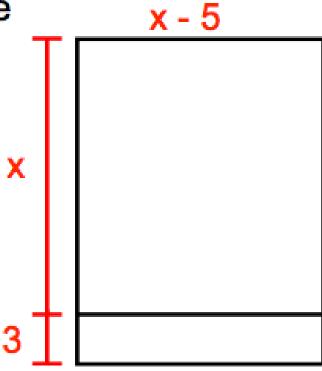
2.
$$x^2 - 4x - 6 = 0$$

Determine if the quadratic can be factored with integers by finding the discriminant. If yes, then factor. If no, explain why.

2.
$$x^2 - 4x - 6 = 0$$

3. Write a quadratic equation that has solutions of -13 and 5.

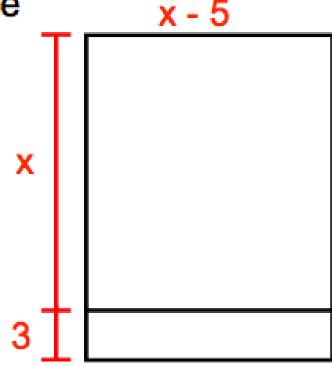
3. Write a quadratic equation that has solutions of -13 and 5.


* need to work backwards
$$(x+13)(x-5)=0$$
For
$$x^{2}-5x+13x-65=0$$
Combine
$$x^{2}+8x-65=0$$

4. Write a quadratic equation that has solutions of 3 and -8.

4. Write a quadratic equation that has solutions of 3 and -8.

$$(x-3)(x+8)=0$$
 $x^3+8x-3x-24=0$
 $x^3+5x-24=0$


5. Find the dimensions of the rectangle if the area is 33 square feet.

5. Find the dimensions of the rectangle if the area is 33 square feet.

Area =
$$l \cdot \omega$$

33 = $(x+3)(x-5)$
33 = $x^3 - 5x + 3x - 15$
0 = $x^2 - 2x - 48$
0 = $(x-8)(x+6)$
 $x=8$ and -6

Only the value of 8 works.

Substitute 8 for x.

Rectangle is 11 ft by 3 ft.